By Topic

Implementation of a Sliding-Mode Controller With an Integral Function and Fuzzy Gain Value for the Electrical Drive With an Elastic Joint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Orowska-Kowalska, T. ; Inst. of Electr. Machines, Drives & Meas., Wroclaw Univ. of Technol., Wroclaw, Poland ; Kaminski, M. ; Szabat, K.

This paper presents a modified sliding-mode structure implemented for the speed control of a two-mass drive. A characteristic feature of the presented control method is the higher rank of the switching function caused by the application of an integral element (sliding mode with an integral function control). The proposed control system is a combination of a sliding-mode controller and a linear controller. Furthermore, to eliminate the chattering phenomenon related to the sliding-mode control, a switching function with a variable slope based on the fuzzy system is implemented. This solution ensures the robustness and dynamics of a two-mass drive better than with a linear speed controller. The main stages of the design methodology of the presented speed control structure are described in the initial sections of this paper. In the subsequent sections, simulation and experimental tests for the proposed control structure are presented and discussed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 4 )