Cart (Loading....) | Create Account
Close category search window
 

Method of Load/Fault Detection for Loosely Coupled Planar Wireless Power Transfer System With Power Delivery Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhen Ning Low ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Casanova, J.J. ; Maier, P.H. ; Taylor, J.A.
more authors

A method to determine various operating modes of a high-efficiency inductive wireless power transfer system which is capable of supporting more than one receiver is proposed. The three operating modes are no-load, safe, and fault modes. The detection scheme probes the transmitter circuitry periodically to determine the operating mode. For power saving, the transmitter is powered down when there is no valid receiver placed on the transmitting coil. If any conductive or magnetic object that can affect the total effective inductance of the transmitting coil is located nearby, the system will enter the fault mode and shut down the transmitter so that it will not be damaged. The safe mode is the nominal operation mode when the power transmission efficiency is high with minimum power loss and zero-voltage switching operation of the class-E transmitter is achieved. The determination of the operating mode is achieved by analyzing the transmitting coil voltage and supply current space, requiring no communication link between the transmitter and receiver. The linear relationship between the power delivery and the supply current can be used to calculate the power delivered to the load(s).

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.