Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multiband Hysteresis Modulation and Switching Characterization for Sliding-Mode-Controlled Cascaded Multilevel Inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, R. ; Dept. of Electr. Eng., M.N. Nat. Inst. of Technol., Allahabad, India ; Ghosh, A. ; Joshi, A.

In this paper, a generalized multiband hysteresis modulation and its characterization have been proposed for the sliding-mode control of cascaded H-bridge multilevel-inverter (CHBMLI)-controlled systems. A frequency-domain method is proposed for the determination of net hysteresis bandwidth for a given desired maximum switching frequency of the inverter. The switching transition concept of Tsypkin's method and the describing function of nonlinear relay have been used for the derivation of results. A hierarchical switching algorithm has been suggested for the modular cells of the cascaded multilevel inverter. The hierarchy of each cell is swapped sequentially to provide the self-balancing capability in case the dc-link voltage is supported by the capacitors. The simulation and experimental verification of the derived results are provided through a single-phase distribution static compensator (DSTATCOM) model. The application in the three-phase system has been shown through simulation studies on a 3.3-kV distribution-system compensation using DSTATCOM. Verification on both single- and three-phase systems is obtained using a five-level cascaded-multilevel-inverter topology.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 7 )