Cart (Loading....) | Create Account
Close category search window
 

Clustering-Based Extraction of Border Training Patterns for Accurate SVM Classification of Hyperspectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demir, B. ; Dept. of Electron. & Telecommun. Eng., Univ. of Kocaeli, Kocaeli, Turkey ; Erturk, S.

This letter presents an accurate support vector machine (SVM)-based hyperspectral image classification algorithm, which uses border training patterns that are close to the separating hyperplane. Border training patterns are obtained in two consecutive steps. In the first step, clustering is performed to training data of each class, and cluster centers are taken as initial training data for SVM. In the second step, the reduced-size training data composed of cluster centers are used in SVM training, and cluster centers obtained as support vectors at this step are regarded to be located close to the hyperplane border. Original training samples are contained in clusters for which the cluster centers are obtained to be close to the hyperplane border and the corresponding cluster centers are then together assigned as border training patterns. These border training patterns are then used in the training of the SVM classifier. Experimental results show that it is possible to significantly increase the classification accuracy of SVM using border training patterns obtained with the proposed approach.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 4 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.