Cart (Loading....) | Create Account
Close category search window
 

Analysis and Modeling of Naturalness in Handwritten Characters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dolinsky, J. ; Grad. Sch. of Design, Kyushu Univ., Fukuoka, Japan ; Takagi, H.

In this paper, we define the naturalness of handwritten characters as being the difference between the strokes of the handwritten characters and the archetypal fonts on which they are based. With this definition, we mathematically analyze the relationship between the font and its naturalness using canonical correlation analysis (CCA), multiple linear regression analysis, feedforward neural networks (FFNNs) with sliding windows, and recurrent neural networks (RNNs). This analysis reveals that certain properties of font character strokes do not have a linear relationship with their naturalness. In turn, this suggests that nonlinear techniques should be used to model the naturalness, and in our investigations, we find that an RNN with a recurrent output layer performs the best among four linear and nonlinear models. These results indicate that it is possible to model naturalness, defined in our study as the difference between handwritten and archetypal font characters but more generally as the difference between the behavior of a natural system and a corresponding basic system, and that naturalness learning is a promising approach for generating handwritten characters.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.