By Topic

A Process-Variation Aware Technique for Tile-Based, Massive Multicore Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Musoll, E. ; ConSentry Networks, Milpitas

Process variations in advanced nodes introduce significant core-to-core performance differences in single-chip multi-core architectures. Isolating each core with its own frequency and voltage island helps improving the performance of the multi-core architecture by operating at the highest frequency possible rather than operating all the cores at the frequency of the slowest core. However, inter-core communication suffers from additional cross-clock-domain latencies that can offset the performance benefits. This work proposes the concept of the configurable, variable-size frequency and voltage domain, and it is described in the context of a tile-based, massive multi-core architecture.

Published in:

Computer Architecture Letters  (Volume:8 ,  Issue: 2 )