By Topic

Anticipatory Control of Wind Turbines With Data-Driven Predictive Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kusiak, A. ; Dept. of Mech. & Ind. Eng., Univ. of Iowa, Iowa City, IA, USA ; Zhe Song ; Haiyang Zheng

The concept of anticipatory control applied to wind turbines is presented. Anticipatory control is based on the model predictive control (MPC) approach. Unlike the MPC method, noncontrollable variables (such as wind speed) are directly considered in the dynamic equations presented in the paper to predict response variables, e.g., rotor speed and turbine power output. To determine future states of the power drive with the dynamic equations, a time series model was built for wind speed. The time series model was fused with the dynamic equations to predict the response variables over a certain prediction horizon. Based on these predictions, an optimization model was solved to find the optimal control settings to improve the power output without incurring large rotor speed changes. As both the dynamic equations and time series model were built by data mining algorithms, no gradient information is available. A modified evolutionary strategy algorithm was used to solve a nonlinear constrained optimization problem. The proposed approach has been tested on the data collected from a 1.5 MW wind turbine.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:24 ,  Issue: 3 )