By Topic

Clustering of Hyperspectral Images Based on Multiobjective Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paoli, A. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Melgani, F. ; Pasolli, E.

In this paper, we present a new methodology for clustering hyperspectral images. It aims at simultaneously solving the following three different issues: 1) estimation of the class statistical parameters; 2) detection of the best discriminative bands without requiring the a priori setting of their number by the user; and 3) estimation of the number of data classes characterizing the considered image. It is formulated within a multiobjective particle swarm optimization (MOPSO) framework and is guided by three different optimization criteria, which are the log-likelihood function, the Bhattacharyya statistical distance between classes, and the minimum description length (MDL). A detailed experimental analysis was conducted on both simulated and real hyperspectral images. In general, the obtained results show that interesting classification performances can be achieved by the proposed methodology despite its completely unsupervised nature.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 12 )