Cart (Loading....) | Create Account
Close category search window
 

Sleep Apnea Screening by Autoregressive Models From a Single ECG Lead

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mendez, M.O. ; Dept. of Biomed. Eng., Politec. di Milano, Milano, Italy ; Bianchi, A.M. ; Matteucci, M. ; Cerutti, S.
more authors

This paper presents a method for obstructive sleep apnea (OSA) screening based on the electrocardiogram (ECG) recording during sleep. OSA is a common sleep disorder produced by repetitive occlusions in the upper airways and this phenomenon can usually be observed also in other peripheral systems such as the cardiovascular system. Then the extraction of ECG characteristics, such as the RR intervals and the area of the QRS complex, is useful to evaluate the sleep apnea in noninvasive way. In the presented analysis, 50 recordings coming from the apnea Physionet database were used; data were split into two sets, the training and the testing set, each of which was composed of 25 recordings. A bivariate time-varying autoregressive model (TVAM) was used to evaluate beat-by-beat power spectral densities for both the RR intervals and the QRS complex areas. Temporal and spectral features were changed on a minute-by-minute basis since apnea annotations where given with this resolution. The training set consisted of 4950 apneic and 7127 nonapneic minutes while the testing set had 4428 apneic and 7927 nonapneic minutes. The K-nearest neighbor (KNN) and neural networks (NN) supervised learning classifiers were employed to classify apnea and non apnea minutes. A sequential forward selection was used to select the best feature subset in a wrapper setting. With ten features the KNN algorithm reached an accuracy of 88%, sensitivity equal to 85%, and specificity up to 90%, while NN reached accuracy equal to 88%, sensitivity equal to 89% and specificity equal to 86%. In addition to the minute-by-minute classification, the results showed that the two classifiers are able to separate entirely (100%) the normal recordings from the apneic recordings. Finally, an additional database with eight recordings annotated as normal or apneic was used to test again the classifiers. Also in this new dataset, the results showed a complete separation between apneic and normal recordings.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.