By Topic

Bootstrap Resampling for Image Registration Uncertainty Estimation Without Ground Truth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jan Kybic ; Center for Appl. Cybern., Czech Tech. Univ. in Prague, Prague, Czech Republic

We address the problem of estimating the uncertainty of pixel based image registration algorithms, given just the two images to be registered, for cases when no ground truth data is available. Our novel method uses bootstrap resampling. It is very general, applicable to almost any registration method based on minimizing a pixel-based similarity criterion; we demonstrate it using the SSD, SAD, correlation, and mutual information criteria. We show experimentally that the bootstrap method provides better estimates of the registration accuracy than the state-of-the-art Cramer-Rao bound method. Additionally, we evaluate also a fast registration accuracy estimation (FRAE) method which is based on quadratic sensitivity analysis ideas and has a negligible computational overhead. FRAE mostly works better than the Cramer-Rao bound method but is outperformed by the bootstrap method.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 1 )