System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Gold/Molecule/p ^+ Si Devices: Variable Temperature Electronic Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scott, A. ; Sch. of Electr. & Comput. Eng., Purdue Univ., Lafayette, IN, USA ; Janes, D.B.

Although a considerable amount of experimental and theoretical work has been devoted to nanoelectronic systems with molecular components, relatively little work has been done on molecular electronic devices on technologically relevant substrates such as silicon. Metal-molecule-semiconductor (MMS) studies have generally focused on structures in which the semiconductor barrier is dominant or treated the semiconductor as a metallic contact. In this paper, we present measured temperature-dependent current-voltage characteristics of gold/molecular monolayer/p+ silicon devices. We explore how the bandstructure of the degenerately doped semiconductor, molecular electronic properties, surface states, and molecular vibronic properties contribute to the electronic transport. We also demonstrate that molecule-dominated behavior can be achieved in a MMS device by appropriate engineering of the contact electronic properties.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:9 ,  Issue: 4 )