Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Juejun Hu ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Carlie, Nathan ; Petit, Laeticia ; Agarwal, A.
more authors

Planar microdisk optical resonators fabricated from Ge23Sb7S70 chalcogenide glass on a silicon substrate are applied for cavity-enhanced spectroscopic measurement of chemical molecular absorption fingerprint. A 0.02 cm- 1 detection limit for these devices is demonstrated. This detection limit represents a threefold improvement as compared to a straight waveguide sensor, while the physical device length is reduced by 40-fold. The reduction in device footprint with enhanced sensitivity makes the structure attractive for ldquosensor-on-a-chiprdquo device applications. We also present a design optimization approach for cavity-enhanced IR absorption spectroscopy using traveling-wave resonators, which indicates that further performance improvement can be achieved in optimally coupled, low-loss resonant cavities.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 23 )