By Topic

Multiperiod Remanufacturing Planning With Uncertain Quality of Inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meltem Denizel ; Faculty of Management, Sabanci University, Istanbul, Turkey ; Mark Ferguson ; Gilvan “Gil” C. Souza

In this paper, we consider production planning when inputs have different and uncertain quality levels, and there are capacity constraints. This situation is typical of most remanufacturing environments, where inputs are product returns (also called cores). Production (remanufacturing) cost increases as the quality level decreases, and any unused cores may be salvaged at a value that increases with their quality level. Decision variables include, for each period and under a certain probabilistic scenario, the amount of cores to grade, the amount to remanufacture for each quality level, and the amount of inventory to carry over for future periods for ungraded cores, graded cores, and finished remanufactured products. Our model is grounded with data collected at a major original equipment manufacturer that also remanufactures. We formulate the problem as a stochastic program; although it is a large linear program, it can be solved easily using Cplex. We provide a numeric study to generate insights into the nature of the solution.

Published in:

IEEE Transactions on Engineering Management  (Volume:57 ,  Issue: 3 )