By Topic

A Practical Acceleration Algorithm for Real-Time Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sumbul, U. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Santos, J.M. ; Pauly, J.M.

A practical acceleration algorithm for real-time magnetic resonance imaging (MRI) is presented. Neither separate training scans nor embedded training samples are used. The Kalman filter based algorithm provides a fast and causal reconstruction of dynamic MRI acquisitions with arbitrary readout trajectories. The algorithm is tested against abrupt changes in the imaging conditions and offline reconstructions of in vivo cardiac MRI experiments are presented.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 12 )