By Topic

Stochastic Reliability-Growth: A Model for Fault-Removal in Computer-Programs and Hardware-Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Littlewood, Bev ; Mathematics Department; The City University; Northampton Square; London ECIV OHB ENGLAND.

An assumption commonly made in early models of software reliability is that the failure rate of a program is a constant multiple of the (unknown) number of faults remaining. This implies that all faults contribute the same amount to the failure rate of the program. The assumption is challenged and an alternative proposed. The suggested model results in earlier fault-fixes having a greater effect than later ones (the faults which make the greatest contribution to the overall failure rate tend to show themselves earlier, and so are fixed earlier), and the DFR property between fault fixes (assurance about programs increases during periods of failure-free operation, as well as at fault fixes). The model is tractable and allows a variety of reliability measures to be calculated. Predictions of total execution time to achieve a target reliability, and total number of fault fixes to target reliability, are obtained. The model might also apply to hardware reliability growth resulting from the elimination of design errors.

Published in:

Reliability, IEEE Transactions on  (Volume:R-30 ,  Issue: 4 )