By Topic

First-Passage Time Distribution of Brownian Motion as a Reliability Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sherif, Y.S. ; The University of Alabama in Huntsville; Industrial and Systems Engineering; P.O. Box 1247, Huntsville, Alabama 35899 USA. ; Smith, M.L.

Since the inverse Gaussian distribution arises as the distribution of first passage time of Brownian motion, its applicability to lifetime or survival situations is a natural consequence. The failure rate for the inverse Gaussian distribution first increases until it reaches its maximum value somewhere to the right of the mode, then it decreases monotonically to a non-zero asymptotic value. This paper fits the inverse Gaussian distribution model to observed failure data of high speed steel tools in machining low carbon steel. Then the lognormal distribution model is hypothesized for the same failure data. The inverse Gaussian fits better.

Published in:

Reliability, IEEE Transactions on  (Volume:R-29 ,  Issue: 5 )