By Topic

Performance optimization of TCP/IP over 10 Gigabit Ethernet by precise instrumentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

End-to-end communications on 10 Gigabit Ethernet (10 GbE) WAN became popular. However, there are difficulties that need to be solved before utilizing Long Fat-pipe Networks (LFNs) by using TCP. We observed that the followings caused performance depression: short-term bursty data transfer, mismatch between TCP and hardware support, and excess CPU load. In this research, we have established systematic methodologies to optimize TCP on LFNs. In order to pinpoint causes of performance depression, we analyzed real networks precisely by using our hardware-based wire-rate analyzer with 100-ns time-resolution. We took the following actions on the basis of the observations: (1) utilizing hardware-based pacing to avoid unnecessary packet losses due to collisions at bottlenecks, (2) modifying TCP to adapt packet coalescing mechanism, (3) modifying programs to reduce memory copies. We have achieved a constant through-put of 9.08 Gbps on a 500 ms RTT network for 5 h. Our approach has overcome the difficulties on single-end 10 GbE LFNs.

Published in:

High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference for

Date of Conference:

15-21 Nov. 2008