By Topic

A novel approach to generate artificial outliers for support vector data description

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chi-Kai Wang ; Dept. of Mech. Eng., Chung Yuan Christian Univ., Chungli, Taiwan ; Yung Ting ; Yi-Hung Liu ; Hariyanto, G.

In this paper, we propose a novel approach to generate artificial outliers for support vector data description with boundary value method. In SVDD, the width parameter S and the penalty parameter C influence the learning results. The N-fold M times cross-validation is well-known and popular scheme to calculate the best (C, S) values. To automatically optimize the identification rate, we need more outliers. Due to this reason, we utilize boundary value in any two dimensions randomly to generalize new outliers. At the last, we use three benchmark data sets: iris, wine, and balance-scale data base to validate the approach in this research has better classification result and faster performance.

Published in:

Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on

Date of Conference:

5-8 July 2009