Cart (Loading....) | Create Account
Close category search window
 

Using an efficient hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy network design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Jian Lin ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chin-Yi Univ. of Technol., Taichung, Taiwan ; Chia-Chun Weng ; Chin-Ling Lee ; Chi-Yung Lee

This study presents an evolutionary neural fuzzy network, designed using the functional-link-based neural fuzzy network (FLNFN) and a new evolutionary learning algorithm. This new evolutionary learning algorithm is based on a hybrid of cooperative particle swarm optimization and cultural algorithm. It is thus called cultural cooperative particle swarm optimization (CCPSO). The proposed CCPSO method, which uses cooperative behavior among multiple swarms, can increase the global search capacity using the belief space. Cooperative behavior involves a collection of multiple swarms that interact by exchanging information to solve a problem. The belief space is the information repository in which the individuals can store their experiences such that other individuals can learn from them indirectly. The proposed FLNFN model uses functional link neural networks as the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the functional link neural networks. The FLNFN model can generate the consequent part of a nonlinear combination of input variables. Finally, the proposed functional-link-based neural fuzzy network with cultural cooperative particle swarm optimization (FLNFN-CCPSO) is adopted in predictive application. Experimental results have demonstrated that the proposed CCPSO method performs well in predicting the number of sunspots problems.

Published in:

Machine Learning and Cybernetics, 2009 International Conference on  (Volume:5 )

Date of Conference:

12-15 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.