By Topic

Manifold learning approach to facial expression recognition on local binary pattern features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zi-Lu Ying ; Sch. of Inf., Wuyi Univ., Jiangmen, China ; You-Wei Zhang ; Jing-Wen Li

In this paper, the facial expression recognition (FER) is investigated based on the observation that a sequence of images of a certain facial expression define a smooth manifold. First, local binary pattern (LBP) algorithm is used to extract the local texture features of the expression images. Then, locally linear embedding (LLE) method is used to learn the structure of the expression manifold in the LBP feature speace. Finally support vector machine (SVM) is used for the classification of expressions. The LBP+LLE algorithm is experimented on the Japanese female facial expression (JAFFE) database. Extensive experiment result comparisons show that LBP features and manifold approach are effective methods for FER. Their combination provides much better performance compared with that of those traditional algorithms such as PCA, LDA, etc.

Published in:

Machine Learning and Cybernetics, 2009 International Conference on  (Volume:1 )

Date of Conference:

12-15 July 2009