By Topic

Community intrusion detection system based on wavelet neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jing-Wen Tian ; Coll. of Autom., Beijing Union Univ., Beijing, China ; Mei-Juan Gao ; Ling-Fang He ; Shi-Ru Zhou

A community intrusion detection system based on wavelet neural network (WNN) is presented in this paper. This system is composed of ARM (Advanced RISC Machines) data acquisition nodes, wireless mesh network and control centre. The data acquisition node uses sensors to collect information and processes them by image detection algorithm, and then transmits information to control centre with wireless mesh network. When there is abnormal phenomenon, the system starts the camera and the WNN is used to recognize the face image. We adopt a algorithm of reduce the number of the wavelet basic function by analysis the sparseness property of sample data which can optimize the wavelet network, and give the network learning algorithm. With the ability of strong pattern classification and function approach and fast convergence of WNN, the recognition method can truly classify the face. This system resolves the defect and improves the intelligence and alleviates worker's working stress.

Published in:

Machine Learning and Cybernetics, 2009 International Conference on  (Volume:2 )

Date of Conference:

12-15 July 2009