By Topic

The matrix form for weighted linear discriminant analysis and fractional linear discriminant analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tianwei Xu ; Yunan Normal Univ., Kunming, China ; Chong Lu ; Wanquan Liu

In this paper we will extend the recently proposed weighted linear discriminant analysis (W_LDA) and fraction-step linear discriminant analysis (F_LDA) from one dimension vector form to the case of two dimension matrix form, which are called weighted two dimensional linear discriminant analysis (W_2DLDA) and fraction-step two dimension linear discriminant analysis (F_2DLDA), respectively. The motivation of this work is based on the recent research results on two dimensional principal component analysis (2DPCA) and 2DLDA showing that the two dimensional algorithms can save computational costs significantly and thus improve the classifiers performances. First, we derived these numerical algorithms in matrix form and then we implement these two new algorithms on ORL and YALE face databases. The experimentation results show that W_2DLDA produces the best performance among F_2DLDA, F_LDA and W_LDA.

Published in:

Machine Learning and Cybernetics, 2009 International Conference on  (Volume:3 )

Date of Conference:

12-15 July 2009