By Topic

Analysis of grating surface emitting lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Noll, R.J. ; Perkin-Elmer Corp., Danbury, CT, USA ; Macomber, S.H.

An approach to the analysis of grating-coupled semiconductor lasers is presented. It is shown that there are only two resonant solutions when the grating has infinite extent. The solutions are either symmetric or antisymmetric about the center of the longitudinal coordinate system where the antisymmetric solution is nonradiating. The field in the grating layer is expressed in terms of grating eigenfunctions and rigorously matched to the boundary conditions at the waveguide interface. Solutions to the finite-length grating problem are expressed as linear combinations of the infinite-length solutions. It is shown that the two diffraction parameters in the coupled-wave equations are composed of sums and differences of the eigenvalues from the infinite-length problem

Published in:

Quantum Electronics, IEEE Journal of  (Volume:26 ,  Issue: 3 )