By Topic

A pioneering Cryptic Random Projection based approach for privacy preserving data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. Murugesan ; Department of Computer Science and Engineering1, Anna University, Chennai - 600 025, India ; Md. Rukunuddin Ghalib ; J. Gitanjali ; J. Indumathi
more authors

Privacy is the most important apprehension in many data mining applications. In this paper a new technique called Cryptic Random Projection, solves the re-identification quandary (which is found in the conventional random projections).Here this encryption based random projection assigns secret keys to the positions of random matrix elements and not to the random numbers. We have addressed two kinds of random sequences for generating the random sequences called determinist and indeterminist random sequences and encrypted it in a new way so that the original data cannot be re-identified. We have also optimized the privacy level which toughens the re-identification of original data without compromising the processing speed and data utility. We hope the projected solution will tarmac way for investigation track and toil well according to the evaluation metrics including hiding effects, data utility, and time performance.

Published in:

Information Reuse & Integration, 2009. IRI '09. IEEE International Conference on

Date of Conference:

10-12 Aug. 2009