By Topic

Inferring Causal Relations from Multivariate Time Series: A Fast Method for Large-Scale Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yinyin Yuan ; Dept. of Comput. Sci., Univ. of Warwick, Coventry, UK ; Chang-Tsun Li

Various multivariate time series analysis techniques have been developed with the aim of inferring causal relations between time series. Previously, these techniques have proved their effectiveness on economic and neurophysiological data, which normally consist of hundreds of samples. However, in their applications to gene regulatory inference, the small sample size of gene expression time series poses an obstacle. In this paper, we describe some of the most commonly used multivariate inference techniques and show the potential challenge related to gene expression analysis. In response, we propose a directed partial correlation (DPC) algorithm as an efficient and effective solution to causal/regulatory relations inference on small sample gene expression data. Comparative evaluations on the existing techniques and the proposed method are presented. To draw reliable conclusions, a comprehensive benchmarking on data sets of various setups is essential. Three experiments are designed to assess these methods in a coherent manner. Detailed analysis of experimental results not only reveals good accuracy of the proposed DPC method in large-scale prediction, but also gives much insight into all methods under evaluation.

Published in:

Bioinformatics and BioEngineering, 2009. BIBE '09. Ninth IEEE International Conference on

Date of Conference:

22-24 June 2009