Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Passivity-Based Control for an Interleaved Current-Fed Full-Bridge Converter With a Wide Operating Range Using the Brayton–Moser Form

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Haihua Zhou ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Khambadkone, A.M. ; Kong, X.

An interleaved current-fed full-bridge converter has the capability to step up the voltage while maintaining a low input current ripple. Therefore, it is suitable for application such as a front-end converter for fuel cell where the source current ripple has to be small. However, since the source voltage varies with change in load profile, it is a challenge to design a stable controller that works well for a wide operating range. In this paper, an energy-based approach using a Brayton-Moser modeled passivity-based controller is proposed along with an augmented integrator to achieve voltage regulation under wide operating range. Experimental results verify that the proposed controller is able to achieve good dynamic performance and stable operation under wide operating range.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 9 )