Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

GMP-Based Channel Estimation for Single-Carrier Transmissions over Doubly Selective Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qinghua Guo ; Sch. of Electr., Electron. & Comput. Eng., Univ. of Western Australia, Perth, WA, Australia ; Defeng Huang

We present a graph-based channel estimation approach for SC-IFDE (single-carrier transmissions with iterative frequency domain equalization) without CP (cyclic prefix) over doubly selective channels using the recently developed Gaussian message passing (GMP) technique. A direct application of the GMP updating rules in the FFG (Forney-style factor graph) of the SC-IFDE system model incurs high complexity. Approximate updating rules are therefore developed to overcome this problem. The proposed GMP-based channel estimation approach has similar complexity as the low-complexity Kalman-filtering based frequency domain channel estimation approach in the literature, but significantly outperforms the latter due to its enhanced capability in capturing the time correlation information of doubly selective channels through bidirectional processing.

Published in:

Signal Processing Letters, IEEE  (Volume:17 ,  Issue: 1 )