Cart (Loading....) | Create Account
Close category search window
 

Instantaneous Microwave Frequency Measurement With Improved Measurement Range and Resolution Based on Simultaneous Phase Modulation and Intensity Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xihua Zou ; Microwave Photonics Res. Lab., Univ. of Ottawa, Ottawa, ON, Canada ; Shilong Pan ; Jianping Yao

A novel approach to implementing instantaneous microwave frequency measurement based on simultaneous optical phase modulation and intensity modulation with improved measurement range and resolution is proposed and experimentally demonstrated. The simultaneous optical phase modulation and intensity modulation are implemented using a polarization modulator (PolM) in conjunction with an optical polarizer. The phase- and intensity-modulated optical signals are then sent to a dispersive element, to introduce chromatic dispersions, which results in two complementary dispersion-induced power penalty functions. The ratio between the two power penalty functions has a unique relationship with the microwave frequency. Therefore, by measuring the microwave powers and calculating the power ratio, the microwave frequency can be estimated. Thanks to the complementary nature of the power penalty functions, a power ratio having a faster change rate versus the input frequency, i.e., a greater first-order derivative, is resulted, which ensures an improved measurement range and resolution. The proposed approach for microwave frequency measurement of a continuous-wave and a pulsed microwave signal is experimentally investigated. A frequency measurement range as large as 17 GHz with a measurement resolution of plusmn 0.2 GHz for a continuous-wave microwave signal and plusmn0.5 GHz for a pulsed microwave signal is achieved.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 23 )

Date of Publication:

Dec.1, 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.