By Topic

1.8 pJ/Pulse Programmable Gaussian Pulse Generator for Full-Band Noncarrier Impulse-UWB Transceivers in 90-nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Bo Qin ; Tsinghua Univ., Beijing, China ; Xin Wang ; Haolu Xie ; Lin Lin
more authors

This paper presents a single-chip ultralow power programmable Gaussian pulse generator (PG) designed and implemented in the 90-nm CMOS for 3.1-10.6 GHz full-band impulse-radio ultrawideband (UWB) transmitters. Measurement shows that this novel simple two-inverter-based PG achieves the lowest reported power dissipation of merely 1.8 pJ/pulse with a 100-MHz pulse-repeating frequency at 1-V supply, extremely short and programmable pulsewidth ranging from 150 to 350 ps while covering the full 3.1-10.6 GHz UWB spectrum, and a very small area of 0.0068 mm2. It supports up to 6 Gb/s data rate for UWB wireless streaming. A new Federal-CommunicationCommission-aware Gaussian PG design optimization method is discussed and verified experimentally.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 5 )