Cart (Loading....) | Create Account
Close category search window
 

Identifying the Topology of a Coupled FitzHugh–Nagumo Neurobiological Network via a Pinning Mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jin Zhou ; Sch. of Math. & Stat., Wuhan Univ., Wuhan, China ; Wenwu Yu ; Xiumin Li ; Small, M.
more authors

Topology identification of a network has received great interest for the reason that the study on many key properties of a network assumes a special known topology. Different from recent similar works in which the evolution of all the nodes in a complex network need to be received, this brief presents a novel criterion to identify the topology of a coupled FitzHugh-Nagumo (FHN) neurobiological network by receiving the membrane potentials of only a fraction of the neurons. Meanwhile, although incomplete information is received, the evolution of all the neurons including membrane potentials and recovery variables are traced. Based on Schur complement and Lyapunov stability theory, the exact weight configuration matrix can be estimated by a simple adaptive feedback control. The effectiveness of the proposed approach is successfully verified by neural networks with fixed and switching topologies.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.