By Topic

A Scalable and Energy-Efficient Context Monitoring Framework for Mobile Personal Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Seungwoo Kang ; Korea Advanced Institute of Science and Technology, Deajeon ; Jinwon Lee ; Hyukjae Jang ; Youngki Lee
more authors

The key feature of many emerging pervasive computing applications is to proactively provide services to mobile individuals. One major challenge in providing users with proactive services lies in continuously monitoring users' context based on numerous sensors in their PAN/BAN environments. The context monitoring in such environments imposes heavy workloads on mobile devices and sensor nodes with limited computing and battery power. We present SeeMon, a scalable and energy-efficient context monitoring framework for sensor-rich, resource-limited mobile environments. Running on a personal mobile device, SeeMon effectively performs context monitoring involving numerous sensors and applications. On top of SeeMon, multiple applications on the mobile device can proactively understand users' contexts and react appropriately. This paper proposes a novel context monitoring approach that provides efficient processing and sensor control mechanisms. We implement and test a prototype system on two mobile devices: a UMPC and a wearable device with a diverse set of sensors. Example applications are also developed based on the implemented system. Experimental results show that SeeMon achieves a high level of scalability and energy efficiency.

Published in:

IEEE Transactions on Mobile Computing  (Volume:9 ,  Issue: 5 )