By Topic

Adaptive ground clutter suppression for conformal array radar systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. K. Hersey ; Sensors and Electromagnetic Applications Laboratory, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA, USA ; W. L. Melvin ; J. H. Mcclellan ; E. Culpepper

Conformal arrays (CFAs) possess certain desirable characteristics for deployment on unmanned aerial vehicles and other payload-limited platforms. However, the CFA non-planar geometry induces clutter non-stationarity, resulting in elevated signal-to-interference-plus-noise ratio (SINR) loss when applying conventional space-time adaptive processing (STAP) algorithms. Non-stationary clutter leads to covariance matrix estimation error and, consequently, an erroneous STAP frequency response. In this study, the authors examine two practical conformal antenna configurations: a belly-mounted canoe and a nose-mounted, chined shape. Using high-fidelity signal models, the authors show traditional STAP losses in excess of 10-dB because of the effects of clutter non-stationarity. The authors then investigate a number of ameliorating techniques compatible with standard STAP implementation, including localised processing, localised processing with time-varying weights, equivalent uniform linear array transformation, angle-Doppler warping and higher-order angle-Doppler warping. The authors demonstrate very good performance for the higher-order angle-Doppler warping method applied to the chined radome shape, with peak adaptive SINR losses reduced from nearly 16-dB for the uncompensated case to 3-dB of loss consistent with performance attainable in a homogeneous clutter environment. The authors also find good performance for three-dimensional angle-Doppler warping over azimuth, elevation and Doppler when applied to the tapered canoe shape, with uncompensated losses of roughly 14-dB reduced to 3-dB, again a level compatible with STAP applied in a homogeneous clutter environment. The authors thus show that CFA STAP can yield performance similar to that of a conventional planar array when using appropriate compensation methods.

Published in:

IET Radar, Sonar & Navigation  (Volume:3 ,  Issue: 4 )