By Topic

An Item-based Collaborative Filtering Recommendation Algorithm Using Slope One Scheme Smoothing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
DeJia Zhang ; Wenzhou Vocational & Tech. Coll., Wenzhou, China

Collaborative filtering is one of the most important technologies in electronic commerce. With the development of recommender systems, the magnitudes of users and items grow rapidly, resulted in the extreme sparsity of user rating data set. Traditional similarity measure methods work poor in this situation, make the quality of recommendation system decreased dramatically. Poor quality is one major challenge in collaborative filtering recommender systems. Sparsity of users' ratings is the major reason causing the poor quality. To address this issue, an item-based collaborative filtering recommendation algorithm using slope one scheme smoothing is presented. This approach predicts item ratings that users have not rated by the employ of slope one scheme, and then uses Pearson correlation similarity measurement to find the target items' neighbors, lastly produces the recommendations. The experiments are made on a common data set using different recommender algorithms. The results show that the proposed approach can improve the accuracy of the collaborative filtering recommender system.

Published in:

Electronic Commerce and Security, 2009. ISECS '09. Second International Symposium on  (Volume:2 )

Date of Conference:

22-24 May 2009