By Topic

An Improved Hybrid Genetic Algorithms Using Simulated Annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shi Huawang ; Sch. of Civil Eng., Hebei Univ. of Eng., Handan, China

It is well known that simulated annealing (SA) and genetic algorithm (GA) are two global methods and can then be used to determine the optimal solution of NP-hard problem. In this paper, due to difficulty of obtaining the optimal solution in medium and large-scaled problems, a hybrid genetic algorithm (HGA) was also developed. The proposed HGA incorporates simulated annealing into a basic genetic algorithm that enables the algorithm to perform genetic search over the subspace of local optima. The two proposed solution methods were compared on Rosenbrock function global optimal problems, and computational results suggest that the HGA algorithm have good ability of solving the problem and the performance of HGA is very promising because it is able to find an optimal or near-optimal solution for the test problems.

Published in:

Electronic Commerce and Security, 2009. ISECS '09. Second International Symposium on  (Volume:1 )

Date of Conference:

22-24 May 2009