By Topic

Intelligently controllable Ankle Foot Orthosis (I-AFO) and its application for a patient of Guillain-Barre syndrome

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Sosuke Tanida ; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan ; Takehito Kikuchi ; Taigo Kakehashi ; Kikuko Otsuki
more authors

Ankle-foot orthoses (AFOs) are orthotic devices supporting movements of ankles for disabled people for example hemiplegia, peroneal nerve palsy, etc. In our research, we have developed the intelligently controllable AFO (I-AFO) which can control its ankle torque by using compact magneto-rheological fluid (MRF) brakes. In this paper, we describe the gait-control tests with I-AFO for a patient of the Guillain-Barre syndrome. The subject has difficulty in his voluntary movement of the peripheral part of the inferior limb, and there are physical limitations on his ankle. By applying the I-AFO, his gait control was improved by the prevention of drop-foot in the swing-phase and the forward promotion in the stance-phase.

Published in:

2009 IEEE International Conference on Rehabilitation Robotics

Date of Conference:

23-26 June 2009