By Topic

Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aykut Cihan Satici ; Faculty of Engineering and Natural Sciences, Sabanc¿ University, 34956 Istanbul, Turkey ; Ahmetcan Erdogan ; Volkan Patoglu

This paper presents the design, analysis, and a clinical application of a reconfigurable, parallel mechanism based, force feedback exoskeleton for the human ankle. The device can either be employed as a balance/proprioception trainer or configured to accommodate range of motion (RoM)/strengthening exercises. The exoskeleton can be utilized as a clinical measurement tool to estimate dynamic parameters of the ankle and to assess ankle joint properties in physiological and pathological conditions. Kinematic analysis and control of the device are detailed and a protocol for utilization of the exoskeleton to determine ankle impedance is discussed. The prototype of the device is also presented.

Published in:

2009 IEEE International Conference on Rehabilitation Robotics

Date of Conference:

23-26 June 2009