Cart (Loading....) | Create Account
Close category search window
 

Teamwork in Self-Organized Robot Colonies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nouyan, S. ; Inst. de Recherches Interdisciplinaires et de Developpements en Intell. Artificielle (IRIDIA), Univ. Libre de Bruxelles, Brussels, Belgium ; Gross, R. ; Bonani, M. ; Mondada, F.
more authors

Swarm robotics draws inspiration from decentralized self-organizing biological systems in general and from the collective behavior of social insects in particular. In social insect colonies, many tasks are performed by higher order group or team entities, whose task-solving capacities transcend those of the individual participants. In this paper, we investigate the emergence of such higher order entities. We report on an experimental study in which a team of physical robots performs a foraging task. The robots are "identical" in hardware and control. They make little use of memory and take actions purely on the basis of local information. Our study advances the current state of the art in swarm robotics with respect to the number of real-world robots engaging in teamwork (up to 12 robots in the most challenging experiment). To the best of our knowledge, in this paper we present the first self-organized system of robots that displays a dynamical hierarchy of teamwork (with cooperation also occurring among higher order entities). Our study shows that teamwork requires neither individual recognition nor differences between individuals. This result might also contribute to the ongoing debate on the role of these characteristics in the division of labor in social insects.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.