Cart (Loading....) | Create Account
Close category search window
 

Optimization of Data-Flow Computations Using Canonical TED Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ciesielski, M. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA ; Gomez-Prado, D. ; Ren, Q. ; Guillot, J.
more authors

An efficient graph-based method to optimize polynomial expressions in data-flow computations is presented. The method is based on the factorization, common-subexpression elimination, and decomposition of algebraic expressions performed on a canonical Taylor expansion diagram representation. It targets the minimization of the latency and hardware cost of arithmetic operators in the scheduled implementation. The generated data-flow graphs are better suited for high-level synthesis than those extracted directly from the initial specification or obtained with traditional algebraic decomposition methods. Experimental results show that the resulting implementations are characterized by better performance and smaller datapath area than those obtained using traditional algebraic decomposition techniques. The described method is generic, applicable to arbitrary algebraic expressions, and does not require any knowledge of the application domain.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.