By Topic

Optimization of Data-Flow Computations Using Canonical TED Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Maciej Ciesielski ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA ; Daniel Gomez-Prado ; Qian Ren ; JÉrÉmie Guillot
more authors

An efficient graph-based method to optimize polynomial expressions in data-flow computations is presented. The method is based on the factorization, common-subexpression elimination, and decomposition of algebraic expressions performed on a canonical Taylor expansion diagram representation. It targets the minimization of the latency and hardware cost of arithmetic operators in the scheduled implementation. The generated data-flow graphs are better suited for high-level synthesis than those extracted directly from the initial specification or obtained with traditional algebraic decomposition methods. Experimental results show that the resulting implementations are characterized by better performance and smaller datapath area than those obtained using traditional algebraic decomposition techniques. The described method is generic, applicable to arbitrary algebraic expressions, and does not require any knowledge of the application domain.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:28 ,  Issue: 9 )