By Topic

Performance Analysis and Thermal Modeling of a High-Energy-Density Prebiased Inductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wrobel, R. ; Dept. of Electr. & Electron. Eng., Univ. of Bristol, Bristol, UK ; McNeill, N. ; Mellor, P.H.

This paper presents a methodology for analyzing the thermal performance of compact planar wound components. A high-energy-density prebiased choke is used to demonstrate and validate the proposed approach. Loss predictions from electromagnetic finite-element analyses are coupled to an equivalent lumped-circuit thermal model and used to determine the operating thermal envelope for the wound component. Results from the proposed method are directly compared with test measurements taken from the prototype choke and are shown to be in good agreement. A sensitivity analysis indicates that copper loss is the dominant component in such devices and that AC resistance effects are more prominent than core loss.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 1 )