By Topic

Carrier Relaxation and Modulation Response of 1.3- \mu m InAs–GaAs Quantum Dot Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cunzhu Tong ; Div. of Microelectron., Nanyang Technol. Univ., Singapore, Singapore ; Dawei Xu ; Soon Fatt Yoon

A self-consistent rate equation model is presented to investigate the influence of carrier relaxation on the modulation response of 1.3 mum InAs-GaAs quantum dot lasers. In this model, the carrier dynamics in GaAs barrier, relaxation pathways, and the phonon- and Auger-assisted relaxation are considered. The dependence of 3 dB bandwidth on the relaxation time and relaxation pathway is discussed. It is shown that carrier relaxation via less energy level has better carrier confinement and higher 3 dB bandwidth. The improvement of bandwidth by tunnelling injection QD structure is investigated from the point of view of relaxation pathway. The different effects of tunnelling into ground state and excited state on the 3 dB bandwidth are analyzed. The enhanced carrier relaxation by p-type modulation doping and its effect on the bandwidth are investigated. It is found that there exists a tradeoff on the improvement of bandwidth by p-doping, which is explained as the competition between the bandwidth limitation of K -factor and relaxation dynamics. Increase in the bandwidth of QD lasers by improving both the carrier relaxation dynamics and K-factor limitation is discussed.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 23 )