By Topic

Asymptotic Optimality of Running Consensus in Testing Binary Hypotheses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Braca, P. ; DIIIE, Univ. of Salerno, Fisciano, Italy ; Marano, S. ; Matta, V. ; Willett, P.

Consensus in sensor networks is a procedure to corroborate the local measurements of the sensors with those of the surrounding nodes, and leads to a final agreement about a common value that, in detection applications, represents the decision statistic. As the amount of collected data increases, the convergence toward the final statistic is ruled by suitable scaling laws, and the question arises if the asymptotic (large sample) properties of a detection statistic are retained when this statistic is approximated via consensus algorithms. We investigate the asymptotic properties of running consensus detectors both under the Neyman-Pearson paradigm (fixed number of data) and in the sequential case. An appropriate asymptotic framework is developed, and exact theoretical results are provided, showing the asymptotic optimality of the running consensus detector. In addition, numerical experiments are performed to address nonasymptotic scenarios.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 2 )