By Topic

Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aimin Zhou ; Dept. of Comput. Sci. & Technol., East China Normal Univ., Shanghai, China ; Qingfu Zhang ; Yaochu Jin

Most existing multiobjective evolutionary algorithms aim at approximating the Pareto front (PF), which is the distribution of the Pareto-optimal solutions in the objective space. In many real-life applications, however, a good approximation to the Pareto set (PS), which is the distribution of the Pareto-optimal solutions in the decision space, is also required by a decision maker. This paper considers a class of multiobjective optimization problems (MOPs), in which the dimensionalities of the PS and the PF manifolds are different so that a good approximation to the PF might not approximate the PS very well. It proposes a probabilistic model-based multiobjective evolutionary algorithm, called MMEA, for approximating the PS and the PF simultaneously for an MOP in this class. In the modeling phase of MMEA, the population is clustered into a number of subpopulations based on their distribution in the objective space, the principal component analysis technique is used to estimate the dimensionality of the PS manifold in each subpopulation, and then a probabilistic model is built for modeling the distribution of the Pareto-optimal solutions in the decision space. Such a modeling procedure could promote the population diversity in both the decision and objective spaces. MMEA is compared with three other methods, KP1, Omni-Optimizer and RM-MEDA, on a set of test instances, five of which are proposed in this paper. The experimental results clearly suggest that, overall, MMEA performs significantly better than the three compared algorithms in approximating both the PS and the PF.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:13 ,  Issue: 5 )