By Topic

Learning Social Tag Relevance by Neighbor Voting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xirong Li ; Intell. Syst. Lab. Amsterdam, Univ. of Amsterdam, Amsterdam, Netherlands ; Snoek, C.G.M. ; Worring, Marcel

Social image analysis and retrieval is important for helping people organize and access the increasing amount of user tagged multimedia. Since user tagging is known to be uncontrolled, ambiguous, and overly personalized, a fundamental problem is how to interpret the relevance of a user-contributed tag with respect to the visual content the tag is describing. Intuitively, if different persons label visually similar images using the same tags, these tags are likely to reflect objective aspects of the visual content. Starting from this intuition, we propose in this paper a neighbor voting algorithm which accurately and efficiently learns tag relevance by accumulating votes from visual neighbors. Under a set of well-defined and realistic assumptions, we prove that our algorithm is a good tag relevance measurement for both image ranking and tag ranking. Three experiments on 3.5 million Flickr photos demonstrate the general applicability of our algorithm in both social image retrieval and image tag suggestion. Our tag relevance learning algorithm substantially improves upon baselines for all the experiments. The results suggest that the proposed algorithm is promising for real-world applications.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 7 )