By Topic

Multichannel Fast QR-Decomposition Algorithms: Weight Extraction Method and Its Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mobien Shoaib ; Dept. of Signal Process. & Acoust., Helsinki Univ. of Technol., Helsinki, Finland ; Stefan Werner ; JosÉ Antonio Apolinario

Multichannel fast QR decomposition RLS (MC-FQRD-RLS) algorithms are well known for their good numerical properties and low computational complexity. The main limitation is that they lack an explicit weight vector term, limiting themselves to problems seeking an estimate of the output error signal. This paper presents techniques which allow us to use MC-FQRD-RLS algorithms with applications that previously have required explicit knowledge of the adaptive filter weights. We first consider a multichannel system identification setup and present how to obtain, at any time, the filter weights associated with the MC-FQRD-RLS algorithm. Thereafter, we turn to problems where the filter weights are periodically updated using training data, and then used for fixed filtering of a useful data sequence, e.g., burst-trained equalizers. Finally, we consider a particular control structure, indirect learning, where a copy of the coefficient vector is filtering a different input sequence than that of the adaptive filter. Simulations are carried out for Volterra system identification, decision feedback equalization, and adaptive predistortion of high-power amplifiers. The results verify our claims that the proposed techniques achieve the same performance as the inverse QRD-RLS algorithm at a much lower computational cost.

Published in:

IEEE Transactions on Signal Processing  (Volume:58 ,  Issue: 1 )