By Topic

Adaptive Nonseparable Wavelet Transform via Lifting and its Application to Content-Based Image Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Quellec, G. ; Dept. ITI, UEB, Brest, France ; Lamard, M. ; Cazuguel, G. ; Cochener, B.
more authors

We present in this paper a novel way to adapt a multidimensional wavelet filter bank, based on the nonseparable lifting scheme framework, to any specific problem. It allows the design of filter banks with a desired number of degrees of freedom, while controlling the number of vanishing moments of the primal wavelet (mathtilde N?? moments) and of the dual wavelet ( N?? moments). The prediction and update filters, in the lifting scheme based filter banks, are defined as Neville filters of order mathtilde N?? and N?? , respectively. However, in order to introduce some degrees of freedom in the design, these filters are not defined as the simplest Neville filters. The proposed method is convenient: the same algorithm is used whatever the dimensionality of the signal, and whatever the lattice used. The method is applied to content-based image retrieval (CBIR): an image signature is derived from this new adaptive nonseparable wavelet transform. The method is evaluated on four image databases and compared to a similar CBIR system, based on an adaptive separable wavelet transform. The mean precision at five of the nonseparable wavelet based system is notably higher on three out of the four databases, and comparable on the other one. The proposed method also compares favorably with the dual-tree complex wavelet transform, an overcomplete nonseparable wavelet transform.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 1 )