By Topic

Mistuning-Based Control Design to Improve Closed-Loop Stability Margin of Vehicular Platoons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barooah, P. ; Dept. of Mech. & Aerosp. Eng., Univ. of Florida, Gainesville, FL, USA ; Mehta, P.G. ; Hespanha, J.P.

We consider a decentralized bidirectional control of a platoon of N identical vehicles moving in a straight line. The control objective is for each vehicle to maintain a constant velocity and inter-vehicular separation using only the local information from itself and its two nearest neighbors. Each vehicle is modeled as a double integrator. To aid the analysis, we use continuous approximation to derive a partial differential equation (PDE) approximation of the discrete platoon dynamics. The PDE model is used to explain the progressive loss of closed-loop stability with increasing number of vehicles, and to devise ways to combat this loss of stability. If every vehicle uses the same controller, we show that the least stable closed-loop eigenvalue approaches zero as O(1/N2) in the limit of a large number (N) of vehicles. We then show how to ameliorate this loss of stability by small amounts of "mistuning", i.e., changing the controller gains from their nominal values. We prove that with arbitrary small amounts of mistuning, the asymptotic behavior of the least stable closed loop eigenvalue can be improved to O(1/N). All the conclusions drawn from analysis of the PDE model are corroborated via numerical calculations of the state-space platoon model.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 9 )