By Topic

Transient Control of Electro-Hydraulic Fully Flexible Engine Valve Actuation System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zongxuan Sun ; Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Tang-Wei Kuo

Fully flexible valve actuation (FFVA) system, often referred to as camless valvetrain, employs electronically controlled actuators in place of the camshaft to drive the intake and/or exhaust valves for internal combustion engines. This system enables the engine controller to tailor the valve event according to the engine operating condition in real-time to improve fuel economy, emissions, and torque output performance. This paper presents the transient control of a laboratory electro-hydraulic fully flexible valve actuation system. Transient control of the FFVA system includes lift transient, duration transient, phase transient, speed transient, and mode transient. With constant engine speed, the valve profile is periodic in time domain and the lift, phase, and duration transients can be realized using robust repetitive control. When the engine speed varies, the period of the valve profile changes in real-time. This phenomenon poses a fundamental challenge to the transient control problem and repetitive control cannot be applied anymore. To overcome this challenge, we propose a new valve profile consisting of a periodic portion and a dwell portion with time-varying duration. Robust repetitive control is then applied to the periodic portion and proportional plus integral and derivative (PID) control is applied to the dwell portion. These two controls are switched in real-time to achieve asymptotic valve profile tracking performance. To demonstrate the effectiveness of the proposed control method, we show real-time valve-lift profiles used to explore homogeneous charge compression ignition (HCCI) combustion at different engine operating conditions.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 3 )