Cart (Loading....) | Create Account
Close category search window
 

Stability, {l}_{2} -Gain and Asynchronous {H}_{{\infty }} Control of Discrete-Time Switched Systems With Average Dwell Time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lixian Zhang ; Space Control & Inertial Technol. Res. Center, Harbin Inst. of Technol., Harbin, China ; Peng Shi

This paper first investigates the stability and l 2-gain problems for a class of discrete-time switched systems with average dwell time (ADT) switching by allowing the Lyapunov-like functions to increase during the running time of subsystems. The obtained results then facilitate the studies on the issue of asynchronous control, where "asynchronous" means the switching of the controllers has a lag to the switching of system modes. In light of the proposed Lyapunov-like functions, the desired mode-dependent controllers can be designed since the unmatched controllers are allowed to perform in the interval of asynchronous switching before the matched ones are applied. The problem of asynchronous H infin control for the underlying systems in linear cases is then formulated. The conditions of the existence of admissible asynchronous H infin controllers are derived, and a numerical example is provided to show the potential of the developed results.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.