System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Simulation study of oil and water migration modeling based on wavelet neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mei-Juan Gao ; Coll. of Autom., Beijing Union Univ., Beijing, China ; Jing-Wen Tian ; Shi-Ru Zhou

An actual physical simulation model is constructed to simulate the course of oil and water migration. Under certain physical property conditions, we simulated the water injection well and the oil well on the physical simulation model, and continuous measured online the oil and water content of different area of model in three-dimensional space using the 512 routes resistively measuring circuit, then we can obtain large numbers of simulation samples. Considering the issues that the relationship between the remaining oil and every parameters of water displacing oil is a complicated and nonlinear and the advantages of wavelet neural network (WNN), in this paper, the wavelet neural network is used to establish the oil and water migration model. Moreover, we adopt a algorithm of reduce the number of the wavelet basic function by analysis the sparseness property of sample data which can optimize the wavelet network in a large extent, and the network learning algorithm is studied. The simulation results show that this method is feasible and effective.

Published in:

Wavelet Analysis and Pattern Recognition, 2009. ICWAPR 2009. International Conference on

Date of Conference:

12-15 July 2009